Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38366951

RESUMO

Sponges are abundant components of coral reefs known for their filtration capabilities and intricate interactions with microbes. They play a crucial role in maintaining the ecological balance of coral reefs. Humic substances (HS) affect bacterial communities across terrestrial, freshwater, and marine ecosystems. However, the specific effects of HS on sponge-associated microbial symbionts have largely been neglected. Here, we used a randomized-controlled microcosm setup to investigate the independent and interactive effects of HS, elevated temperature, and UVB radiation on bacterial communities associated with the sponge Chondrilla sp. Our results indicated the presence of a core bacterial community consisting of relatively abundant members, apparently resilient to the tested environmental perturbations, alongside a variable bacterial community. Elevated temperature positively affected the relative abundances of ASVs related to Planctomycetales and members of the families Pseudohongiellaceae and Hyphomonadaceae. HS increased the relative abundances of several ASVs potentially involved in recalcitrant organic matter degradation (e.g., the BD2-11 terrestrial group, Saccharimonadales, and SAR202 clade). There was no significant independent effect of UVB and there were no significant interactive effects of HS, heat, and UVB on bacterial diversity and composition. The significant, independent impact of HS on the composition of sponge bacterial communities suggests that alterations to HS inputs may have cascading effects on adjacent marine ecosystems.


Assuntos
Asteraceae , Isoquinolinas , Poríferos , Sulfonamidas , Humanos , Animais , Substâncias Húmicas , Ecossistema , Temperatura
2.
Curr Microbiol ; 80(9): 294, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481620

RESUMO

In the present study, we compared mucus and gut-associated prokaryotic communities from seven nudibranch species with sediment and seawater from Thai coral reefs using high-throughput 16S rRNA gene sequencing. The nudibranch species were identified as Doriprismatica atromarginata (family Chromodorididae), Jorunna funebris (family Discodorididae), Phyllidiella nigra, Phyllidiella pustulosa, Phyllidia carlsonhoffi, Phyllidia elegans, and Phyllidia picta (all family Phyllidiidae). The most abundant bacterial phyla in the dataset were Proteobacteria, Tenericutes, Chloroflexi, Thaumarchaeota, and Cyanobacteria. Mucus and gut-associated communities differed from one another and from sediment and seawater communities. Host phylogeny was, furthermore, a significant predictor of differences in mucus and gut-associated prokaryotic community composition. With respect to higher taxon abundance, the order Rhizobiales (Proteobacteria) was more abundant in Phyllidia species (mucus and gut), whereas the order Mycoplasmatales (Tenericutes) was more abundant in D. atromarginata and J. funebris. Mucus samples were, furthermore, associated with greater abundances of certain phyla including Chloroflexi, Poribacteria, and Gemmatimonadetes, taxa considered to be indicators for high microbial abundance (HMA) sponge species. Overall, our results indicated that nudibranch microbiomes consisted of a number of abundant prokaryotic members with high sequence similarities to organisms previously detected in sponges.


Assuntos
Chloroflexi , Gastrópodes , Microbiota , Animais , RNA Ribossômico 16S/genética , Células Procarióticas , Proteobactérias , Muco , Microbiota/genética , Água do Mar
3.
Microorganisms ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838485

RESUMO

Live feed enrichments are often used in fish larvicultures as an optimized source of essential nutrients to improve larval growth and survival. In addition to this, they may also play an important role in structuring larval-associated microbial communities and may help improve their resistance to diseases. However, there is limited information available on how larval microbial communities and larviculture water are influenced by different live feed enrichments. In the present study, we investigated the effects of two commercial rotifer enrichments (ER) on turbot (Scophthalmus maximus) larval and post-larval gut-associated bacterial communities during larviculture production. We evaluated their effects on bacterial populations related to known pathogens and beneficial bacteria and their potential influence on the composition of bacterioplankton communities during larval rearing. High-throughput 16S rRNA gene sequencing was used to assess the effects of different rotifer enrichments (ER1 and ER2) on the structural diversity of bacterial communities of the whole turbot larvae 10 days after hatching (DAH), the post-larval gut 30 DAH, and the larviculture water. Our results showed that different rotifer feed enrichments were associated with significant differences in bacterial composition of turbot larvae 10 DAH, but not with the composition of larval gut communities 30 DAH or bacterioplankton communities 10 and 30 DAH. However, a more in-depth taxonomic analysis showed that there were significant differences in the abundance of Vibrionales in both 10 DAH larvae and in the 30 DAH post-larval gut fed different RE diets. Interestingly, the ER1 diet had a higher relative abundance of specific amplicon sequence variants (ASVs) related to potential Vibrio-antagonists belonging to the Roseobacter clade (e.g., Phaeobacter and Ruegeria at 10 DAH and Sulfitobacter at 30 DAH). In line with this, the diet was also associated with a lower relative abundance of Vibrio and a lower mortality. These results suggest that rotifer diets can affect colonization by Vibrio members in the guts of post-larval turbot. Overall, this study indicates that live feed enrichments can have modulatory effects on fish bacterial communities during the early stages of development, which includes the relative abundances of pathogenic and antagonist taxa in larviculture systems.

4.
Microbiol Res ; 265: 127183, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36108440

RESUMO

Plasmid-mediated transfer of genes can have direct consequences in several biological processes within sponge microbial communities. However, very few studies have attempted genomic and functional characterization of plasmids from marine host-associated microbial communities in general and those of sponges in particular. In the present study, we used an endogenous plasmid isolation method to obtain plasmids from bacterial symbionts of the marine sponges Stylissa carteri and Paratetilla sp. and investigated the genomic composition, putative ecological relevance and biotechnological potential of these plasmids. In total, we isolated and characterized three complete plasmids, three plasmid prophages and one incomplete plasmid. Our results highlight the importance of plasmids to transfer relevant genetic traits putatively involved in microbial symbiont adaptation and host-microbe and microbe-microbe interactions. For example, putative genes involved in bacterial response to chemical stress, competition, metabolic versatility and mediation of bacterial colonization and pathogenicity were detected. Genes coding for enzymes and toxins of biotechnological potential were also detected. Most plasmid prophage coding sequences were, however, hypothetical proteins with unknown functions. Overall, this study highlights the ecological relevance of plasmids in the marine sponge microbiome and provides evidence that plasmids of sponge bacterial symbionts may represent an untapped resource of genes of biotechnological interest.


Assuntos
Poríferos , Animais , Bactérias/genética , Genômica , Filogenia , Plasmídeos/genética , Poríferos/microbiologia
5.
Mol Ecol ; 31(19): 4932-4948, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881675

RESUMO

Understanding the maintenance and origin of beta diversity is a central topic in ecology. However, the factors that drive diversity patterns and underlying processes remain unclear, particularly for host-prokaryotic associations. Here, beta diversity patterns were studied in five prokaryotic biotopes, namely, two high microbial abundance (HMA) sponge taxa (Xestospongia spp. and Hyrtios erectus), one low microbial abundance (LMA) sponge taxon (Stylissa carteri), sediment and seawater sampled across thousands of kilometres. Using multiple regression on distance matrices (MRM), spatial (geographic distance) and environmental (sea surface temperature and chlorophyll α concentrations) variables proved significant predictors of beta diversity in all five biotopes and together explained from 54% to 82% of variation in dissimilarity of both HMA species, 27% to 43% of variation in sediment and seawater, but only 20% of variation of the LMA S. carteri. Variance partitioning was subsequently used to partition the variation into purely spatial, purely environmental and spatially-structured environmental components. The amount of variation in dissimilarity explained by the purely spatial component was lowest for S. carteri at 11% and highest for H. erectus at 55%. The purely environmental component, in turn, only explained from 0.15% to 2.83% of variation in all biotopes. In addition to spatial and environmental variables, a matrix of genetic differences between pairs of sponge individuals also proved a significant predictor of variation in prokaryotic dissimilarity of the Xestospongia species complex. We discuss the implications of these results for the HMA-LMA dichotomy and compare the MRM results with results obtained using constrained ordination and zeta diversity.


Assuntos
Biodiversidade , Poríferos , Animais , Bactérias/genética , Clorofila , Humanos , Filogenia , Poríferos/genética , RNA Ribossômico 16S/genética , Água do Mar
6.
Biol Rev Camb Philos Soc ; 97(5): 1930-1947, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35808863

RESUMO

Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the ß-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.


Assuntos
Biodiversidade , Florestas , Animais , Aves , Ecossistema , Humanos , Plantas , Árvores
7.
Microbiol Resour Announc ; 11(6): e0015522, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35587780

RESUMO

Here, we report on the draft genome sequence of Vibrio mediterranei strain CyArs1, isolated from the marine sponge Cinachyrella sp. Genome annotation revealed multiple genomic features, including eukaryotic-like repeat protein- and multidrug resistance-encoding genes, potentially involved in symbiotic relationships with the sponge host.

8.
Mar Drugs ; 21(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36662207

RESUMO

Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads.


Assuntos
Antozoários , Anti-Infecciosos , Poríferos , Animais , Humanos , Metabolismo Secundário/genética , Bactérias/metabolismo , Poríferos/genética , Família Multigênica , Candida , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Antozoários/genética , Filogenia
9.
Mol Ecol Resour ; 21(1): 110-121, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32866335

RESUMO

Plasmid transfers among bacterial populations can directly influence the ecological adaptation of these populations and their interactions with host species and environment. In this study, we developed a selective multiply-primed rolling circle amplification (smRCA) approach to enrich and characterize circular plasmid DNA from sponge microbial symbionts via high-throughput sequencing (HTS). DNA (plasmid and total community DNA) obtained from sponge (Cinachyrella sp.) samples and a bacterial symbiont (Vibrio sp. CyArs1) isolated from the same sponge species (carrying unknown plasmids) were used to develop and validate our methodology. The smRCA was performed during 16 hr with 141 plasmid-specific primers covering all known circular plasmid groups. The amplified products were purified and subjected to a reamplification with random hexamer primers (2 hr) and then sequenced using Illumina MiSeq. The developed method resulted in the successful amplification and characterization of the sponge plasmidome and allowed us to detect plasmids associated with the bacterial symbiont Vibrio sp. CyArs1 in the sponge host. In addition to this, a large number of small (<2 kbp) and cryptic plasmids were also amplified in sponge samples. Functional analysis identified proteins involved in the control of plasmid partitioning, maintenance and replication. However, most plasmids contained unknown genes, which could potentially serve as a resource of unknown genetic information and novel replication systems. Overall, our results indicate that the smRCA-HTS approach developed here was able to selectively enrich and characterize plasmids from bacterial isolates and sponge host microbial communities, including plasmids larger than 20 kbp.


Assuntos
Bactérias/classificação , DNA Circular , Técnicas de Amplificação de Ácido Nucleico , Plasmídeos/genética , Poríferos/microbiologia , Animais , Sequência de Bases , Primers do DNA , DNA Bacteriano/genética , DNA Circular/genética
10.
Sci Rep ; 10(1): 20356, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33203970

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Sci Rep ; 10(1): 10023, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572050

RESUMO

The intensification of marine aquaculture raises multiple sustainability issues, namely the handling of nutrient-rich effluents that can adversely impact ecosystems. As integrated multi-trophic aquaculture (IMTA) gains momentum, the use of halophyte plants to phytoremediate aquaculture effluents has received growing attention, particularly in aquaponics. It is, therefore, important to obtain a more in-depth knowledge of the microbial communities present in the root systems of these plants, both in their natural environment (sediment) and in aquaponics, in order to understand their nutrient removal potential. The present study used denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing to assess the bacterial community present in the endosphere and rhizosphere of three halophyte plants: Halimione portulacoides, Salicornia ramosissima and Sarcocornia perennis. Species-specific effects were recorded in the profile and diversity of the bacterial communities present in halophyte roots, with significant differences also recorded for the same halophyte species grown in contrasting environments (sediment vs. aquaponics). In aquaponics the most abundant groups belonged to the orders Rhodocyclales, Campylobacterales, Rhodobacterales and Desulfobacterales, while in the natural environment (sediment) the most abundant groups belonged to the orders Rhizobiales, Sphingomonadales and Alteromonadales. An overall enrichment in bacterial taxa involved in nutrient cycling was recorded in the roots of halophytes grown in aquaponics (such as Denitromonas, Mesorhizobium, Colwellia, Dokdonella and Arcobacter), thereby highlighting their potential to reduce the nutrient loads from aquaculture effluents.


Assuntos
Aquicultura/métodos , Raízes de Plantas/microbiologia , Rizosfera , Plantas Tolerantes a Sal/microbiologia , Microbiologia do Solo , Gerenciamento de Resíduos/métodos , Animais , Campylobacterales/metabolismo , Chenopodiaceae/crescimento & desenvolvimento , Chenopodiaceae/microbiologia , Eletroforese em Gel de Gradiente Desnaturante , Peixes , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , RNA Ribossômico 16S/genética , Plantas Tolerantes a Sal/fisiologia
12.
Antonie Van Leeuwenhoek ; 113(4): 563-587, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31802337

RESUMO

In a previous study, we identified host species that housed high and low diversity prokaryotic communities. In the present study, we expand on this and assessed the prokaryotic communities associated with seawater, sediment and 11 host species from 7 different phyla in a Taiwanese coral reef setting. The host taxa sampled included hard, octo- and black corals, molluscs, bryozoans, flatworms, fish and sea urchins. There were highly significant differences in composition among host species and all host species housed distinct communities from those found in seawater and sediment. In a hierarchical clustering analysis, samples from all host species, with the exception of the coral Galaxea astreata, formed significantly supported clusters. In addition to this, the coral G. astreata and the bryozoan Triphyllozoon inornatum on the one hand and the coral Tubastraea coccinea, the hermit crab Calcinus laevimanus and the flatworm Thysanozoon nigropapillosum on the other formed significantly supported clusters. In addition to composition, there were highly pronounced differences in richness and evenness among host species from the most diverse species, the bryozoan T. inornatum at 2518 ± 240 OTUs per 10,000 sequences to the least diverse species, the octocoral Cladiella sp. at 142 ± 14 OTUs per 10,000 sequences. In line with the differences in composition, there were significant differences in predicted metagenomic gene counts among host species. Furthermore, there were pronounced compositional and predicted functional differences between high diversity hosts (Liolophura japonica, G. astreata, T. coccinea, C. laevimanus, T. inornatum) and low diversity hosts (Antipathes sp., Pomacentrus coelestis, Modiolus auriculatus, T. nigropapillosum, Cladiella sp. and Diadema savigny). In particular, we found that all tested low diversity hosts were predicted to be enriched for the phosphotransferase system compared to high diversity hosts.


Assuntos
Bactérias/classificação , Bactérias/genética , Recifes de Corais , Invertebrados/microbiologia , Animais , Metagenômica , Especificidade da Espécie
13.
Nat Commun ; 10(1): 1644, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967538

RESUMO

Much recent marine microbial research has focused on sponges, but very little is known about how the sponge microbiome fits in the greater coral reef microbial metacommunity. Here, we present an extensive survey of the prokaryote communities of a wide range of biotopes from Indo-Pacific coral reef environments. We find a large variation in operational taxonomic unit (OTU) richness, with algae, chitons, stony corals and sea cucumbers housing the most diverse prokaryote communities. These biotopes share a higher percentage and number of OTUs with sediment and are particularly enriched in members of the phylum Planctomycetes. Despite having lower OTU richness, sponges share the greatest percentage (>90%) of OTUs with >100 sequences with the environment (sediment and/or seawater) although there is considerable variation among sponge species. Our results, furthermore, highlight that prokaryote microorganisms are shared among multiple coral reef biotopes, and that, although compositionally distinct, the sponge prokaryote community does not appear to be as sponge-specific as previously thought.


Assuntos
Organismos Aquáticos/isolamento & purificação , Bactérias/isolamento & purificação , Recifes de Corais , Microbiota , Poríferos/microbiologia , Animais , Organismos Aquáticos/genética , Bactérias/genética , DNA Bacteriano/isolamento & purificação , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Taiwan , Tailândia
14.
PLoS One ; 14(1): e0211209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682196

RESUMO

There is a growing consensus that future technological developments of aquaculture systems should account for the structure and function of microbial communities in the whole system and not only in fish guts. In this study, we aimed to investigate the composition of bacterioplankton communities of a hatchery recirculating aquaculture system (RAS) used for the production of Senegalese sole (Solea senegalensis) juveniles. To this end, we used a 16S rRNA gene based denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analyses to characterize the bacterioplankton communities of the RAS and its water supply. Overall, the most abundant orders were Alteromonadales, Rhodobacterales, Oceanospirillales, Vibrionales, Flavobacteriales, Lactobacillales, Thiotrichales, Burkholderiales and Bdellovibrionales. Although we found a clear distinction between the RAS and the water supply bacterioplankton communities, most of the abundant OTUs (≥50 sequences) in the hatchery RAS were also present in the water supply. These included OTUs related to Pseudoalteromonas genus and the Roseobacter clade, which are known to comprise bacterial members with activity against Vibrio fish pathogens. Overall, in contrast to previous findings for sole grow-out RAS, our results suggest that the water supply may influence the bacterioplankton community structure of sole hatchery RAS. Further studies are needed to investigate the effect of aquaculture practices on RAS bacterioplankton communities and identification of the key drivers of their structure and diversity.


Assuntos
Bactérias/classificação , Linguados/crescimento & desenvolvimento , Plâncton/microbiologia , RNA Ribossômico 16S/genética , Animais , Aquicultura , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Filogenia , Análise de Sequência de DNA , Água/química , Microbiologia da Água
15.
Environ Sci Pollut Res Int ; 25(32): 32756-32766, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30244446

RESUMO

Ocean acidification may exacerbate the environmental impact of oil hydrocarbon pollution by disrupting the core composition of the superficial (0-1 cm) benthic bacterial communities. However, at the subsurface sediments (approximately 5 cm below sea floor), the local biochemical characteristics and the superjacent sediment barrier may buffer these environmental changes. In this study, we used a microcosm experimental approach to access the independent and interactive effects of reduced seawater pH and oil contamination on the composition of subsurface benthic bacterial communities, at two time points, by 16S rRNA gene-based high-throughput sequencing. An in-depth taxa-specific variance analysis revealed that the independent effects of reduced seawater pH and oil contamination were significant predictors of changes in the relative abundance of some specific bacterial groups (e.g., Firmicutes, Rhizobiales, and Desulfobulbaceae). However, our results indicated that the overall microbial community structure was not affected by independent and interactive effects of reduced pH and oil contamination. This study provides evidence that bacterial communities inhabiting subsurface sediment may be less susceptible to the effects of oil contamination in a scenario of reduced seawater pH.


Assuntos
Sedimentos Geológicos/química , Hidrocarbonetos/toxicidade , Água do Mar/química , Poluentes da Água/toxicidade , Bactérias/genética , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Hidrocarbonetos/análise , Microbiota , Poluição por Petróleo/análise , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
16.
Microb Ecol ; 76(3): 610-624, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29470608

RESUMO

Marine lakes are small bodies of landlocked seawater that are isolated from the open sea and have been shown to house numerous rare and unique taxa. The environmental conditions of the lakes are also characterised by lower pH and salinity and higher temperatures than generally found in the open sea. In the present study, we used a 16S rRNA gene barcoded pyrosequencing approach and a predictive metagenomic approach (PICRUSt) to examine bacterial composition and function in three distinct biotopes (sediment, water and the sponge species Biemna fortis) in three habitats (two marine lakes and the open sea) of the Berau reef system, Indonesia. Both biotope and habitat were significant predictors of higher taxon abundance and compositional variation. Most of the variation in operational taxonomic unit (OTU) composition was related to the biotope (42% for biotope alone versus 9% for habitat alone and 15% combined). Most OTUs were also restricted to a single biotope (1047 for B. fortis, 6120 for sediment and 471 for water). Only 98 OTUs were shared across all three biotopes. Bacterial communities from B. fortis, sediment and water samples were, however, also distinct in marine lake and open sea habitats. This was evident in the abundance of higher bacterial taxa. For example, the phylum Cyanobacteria was significantly more abundant in samples from marine lakes than from the open sea. This difference was most pronounced in the sponge B. fortis. In line with the compositional differences, there were pronounced differences in predicted relative gene count abundance among biotopes and habitats. Of particular interest was the predicted enrichment in B. fortis from the marine lakes for pathways including DNA replication and repair and the glutathione metabolism. This may facilitate adaptation of host and microbes to life in 'stressful' low pH, low salinity and/or high temperature environments such as those encountered in marine lakes.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Poríferos/microbiologia , Água do Mar/microbiologia , Animais , Archaea , Bactérias/classificação , Bactérias/genética , Biodiversidade , Recifes de Corais , Ecossistema , Indonésia , Filogenia
17.
FEMS Microbiol Ecol ; 94(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228244

RESUMO

Certain sponge species are difficult to identify using classical taxonomic characters, and other techniques are often necessary. Here we used 454-pyrosequencing of the 16S rRNA gene to investigate bacterial and archaeal communities of two distinct Cinachyrella morphospecies collected from two Indonesian marine lakes with differing degrees of connection to the surrounding sea. Our main goal was to assess whether these morphospecies hosted distinct bacterial and archaeal communities and to what extent these differed from those found in lake water. A recently developed bioinformatic tool (PICRUSt) was used to predict metagenomic gene content of the studied communities. Compositionally, sponge samples clustered according to morphospecies as opposed to marine lake indicating that each morphospecies hosted distinct bacterial and archaeal communities. There were, however, also differences in higher taxon abundance among lakes. In the less connected lake, for example, both Cinachyrella morphospecies had higher levels of the order Synechococcales. With respect to metabolic gene content, although there were pronounced differences in predicted enrichment between both morphospecies, both were putatively enriched for KOs involved in pathways related to stress response, energy metabolism, environmental information processing and the production of secondary metabolites compared to prokaryote communities in water. These morphospecies may thus prove to be interesting sources of novel compounds of potential pharmaceutical and/or biotechnological importance.


Assuntos
Archaea/classificação , Bactérias/classificação , Microbiota/genética , Poríferos/microbiologia , Animais , Archaea/genética , Bactérias/genética , Biodiversidade , Indonésia , Lagos/microbiologia , Metagenômica , Filogenia , Poríferos/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Mar Pollut Bull ; 122(1-2): 259-262, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28662981

RESUMO

Coral reefs around the globe have been subjected to a wide range of stressors. In the present study, fish species were recorded across a pronounced in-to-offshore gradient in the Jakarta Bay-Pulau Seribu reef system. In addition to this, fish species traits were obtained from FishBase. RLQ analysis revealed a significant association between fish species traits and environmental variables. Fish species associated with perturbed, inshore waters were resilient to disturbance, had higher mortality rates, higher growth rates and mainly consumed animals. In contrast, fish species associated with less perturbed, mid- and offshore waters had greater life expectancy, higher age at maturity, greater life span, greater generation time and mainly fed on plants or plants and animals. Eutrophication, pollution and physical destruction of coral substrate in inshore waters has thus selected for a low biomass and depauperate fish community characterised by fast growing and short lived species.


Assuntos
Biodiversidade , Recifes de Corais , Poluição Ambiental , Peixes , Animais , Antozoários , Baías , Dinâmica Populacional
19.
Sci Rep ; 7(1): 1336, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465595

RESUMO

The present study aims to assess the plastic response of Zostera noltei meadows traits under spatio-temporal shifts in salinity combined with sediment environmental variables (temperature; pH; loss-on-ignition (LOI); carbon (C) and nitrogen (N) pools (top 5 cm)). Z. noltei biomass, C and N pools, leaf photosynthetic performance and esterified fatty acid (FA) profile were assessed within a temperate coastal lagoon during winter and late spring, along sites spatially distributed. None of the surveyed traits for Z. noltei displayed a clear spatial trend. Z. noltei proved to be euryhaline, whose biology was only slightly affected within this salinity range, in each season (14-39 in winter; 33-41 in late spring). Seasonal differences in salinity and environmental parameters explain the differences recorded in Z. noltei traits (aboveground biomass, N and C pools; photosynthetic performance). Spatio-temporal salinity shifts did not significantly affect the pool of FA present in Z. noltei. Overall, within the salinity range surveyed, the ecological processes studied and regulating Z. noltei meadows do not appear to be at risk. This work reinforces the plasticity of Z. noltei to salinity shifts within the studied range, with this finding being particularly relevant in the context of extreme weather events (e.g., winter freshwater floods, summer droughts).


Assuntos
Ecossistema , Pradaria , Salinidade , Zosteraceae/fisiologia , Biomassa , Carbono/metabolismo , Ácidos Graxos/análise , Sedimentos Geológicos , Nitrogênio/metabolismo , Fotossíntese , Estações do Ano
20.
Sci Rep ; 7: 41225, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120885

RESUMO

Ria de Aveiro is a mesotidal coastal lagoon with one of the largest continuous salt marshes in Europe. The objective of this work was to assess C, N and P stocks of Spartina maritima (low marsh pioneer halophyte) and Juncus maritimus (representative of mid-high marsh halophytes) combined with the contribution of Halimione portulacoides, Sarcocornia perennis, and Bolbochenous maritimus to the lagoon ≈4400 ha marsh area. A multivariate analysis (PCO), taking into account environmental variables and the annual biomass and nutrient dynamics, showed that there are no clear seasonal or spatial differences within low or mid-high marshes, but clearly separates J. maritimus and S. maritima marshes. Calculations of C, N and P stocks in the biomass of the five most representative halophytes plus the respective rhizosediment (25 cm depth), and taking into account their relative coverage, represents 252053 Mg C, 38100 Mg N and 7563 Mg P. Over 90% of the stocks are found within mid-high marshes. This work shows the importance of this lagoon's salt marshes on climate and nutrients regulation, and defines the current condition concerning the 'blue carbon' and nutrient stocks, as a basis for prospective future scenarios of salt marsh degradation or loss, namely under SLR context.


Assuntos
Carbono/metabolismo , Magnoliopsida/metabolismo , Plantas Tolerantes a Sal/metabolismo , Áreas Alagadas , Biomassa , Magnoliopsida/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fósforo/metabolismo , Portugal , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...